Respuesta :
Answer:
The answer is "[tex]\bold{\frac{ \ e^{9x}}{9} (x-1)+C}\\[/tex]"
Step-by-step explanation:
Taking the integral [tex]\int x^{2x} \ dx[/tex]
Evaluating the integral by using integration:
[tex]u=x\\\\dv=e^{9x} \ dx[/tex]
Let
[tex]u=x\\\\ dv=e^{9x} dx[/tex]
Then,
[tex]\to \frac{du}{dx}= 1 \ and\ v =\int e^{9X} \ dx \\\\\to du = 1 \ dx \\\\\to v = \frac{e^{9x}}{9}\\\\\text{integrate the above value}:\\\\\int\ u \ dv = uv - \int v du \\\\Now, \\\\\to \int x e^{9X} \ dx = x \frac{e^{9x}}{9} - \int \frac{e^{9x}}{9} dx[/tex]
[tex]= \frac{ x \ e^{9x}}{9} - \frac{e^{9x}}{9}\\\\= \frac{ \ e^{9x}}{9} (x-1)+C\\[/tex]
Answer:
[tex]\displaystyle \int {xe^{9x}} \, dx = e^{9x} \bigg( \frac{x}{9} - \frac{1}{81} \bigg) + C[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
U-Substitution
Integration by Parts: [tex]\displaystyle \int {u} \, dv = uv - \int {v} \, du[/tex]
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle \int {xe^{9x}} \, dx[/tex]
Step 2: Integrate Pt. 1
Identify variables for integration by parts using LIPET.
- Set u: [tex]\displaystyle u = x[/tex]
- [u] Differentiate: [tex]\displaystyle du = dx[/tex]
- Set dv: [tex]\displaystyle dv = e^{9x} \ dx[/tex]
- [dv] Integrate [Exponential Integration]: [tex]\displaystyle v = \frac{e^{9x}}{9}[/tex]
Step 3: Integrate Pt. 2
- [Integral] Integration by parts: [tex]\displaystyle \int {xe^{9x}} \, dx = \frac{xe^{9x}}{9} - \int {\frac{e^{9x}}{9}} \, du[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {xe^{9x}} \, dx = \frac{xe^{9x}}{9} - \frac{1}{9} \int {e^{9x}} \, du[/tex]
Step 4: Integrate Pt. 3
Identify variables for u-substitution.
- Set u: [tex]\displaystyle u = 9x[/tex]
- [u] Differentiate [Derivative Properties, Basic Power Rule]: [tex]\displaystyle du = 9 \ dx[/tex]
Step 5: Integrate Pt. 4
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int {xe^{9x}} \, dx = \frac{xe^{9x}}{9} - \frac{1}{81} \int {9e^{9x}} \, du[/tex]
- [Integral] U-Substitution: [tex]\displaystyle \int {xe^{9x}} \, dx = \frac{xe^{9x}}{9} - \frac{1}{81} \int {e^u} \, du[/tex]
- [Integral] Exponential Integration: [tex]\displaystyle \int {xe^{9x}} \, dx = \frac{xe^{9x}}{9} - \frac{e^u}{81} + C[/tex]
- [u] Back-Substitute: [tex]\displaystyle \int {xe^{9x}} \, dx = \frac{xe^{9x}}{9} - \frac{e^{9x}}{81} + C[/tex]
- Factor: [tex]\displaystyle \int {xe^{9x}} \, dx = e^{9x} \bigg( \frac{x}{9} - \frac{1}{81} \bigg) + C[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration