Respuesta :

Answer:

[tex] -7 \frac{1}{2} [/tex]

Step-by-step explanation:

[tex] \frac{6 {x}^{ - 1} {y}^{ \frac{7}{2} } }{ \sqrt{16 {x}^{2} } {y}^{2} } \\ \\ = \frac{6 {x}^{ - 1} {y}^{ \frac{7}{2} } }{ \sqrt{(4 {x} {y})^{2} }}\\ \\ = \frac{6 {x}^{ - 1} {y}^{ \frac{7}{2} } }{ {4 {x} {y}}}\\ \\ = \frac{6}{4} {x }^{ - 1 - 1} {y}^{ \frac{7}{2} - 1 } \\ \\ = \frac{3}{2} {x }^{ - 2} {y}^{ \frac{5}{2} } \\ \\ equating \: it \: with \: \\ a {x}^{b} {y}^{c} \\ \\ \implies \\ a = \frac{3}{2} \\ \\ b = - 2 \\ \\ c = \frac{5}{2} \\ \\ abc = \frac{3}{2} \times ( - 2) \times \frac{5}{2} \\ \\ = - \frac{15}{2} \\ \\ =- 7 \frac{1}{2} \\ [/tex]