Respuesta :

Answer:

A)x=3,x≠-5/3

Step-by-step explanation:

to understand this

you need to know about:

  • equation
  • redical equation
  • PEMDAS

given:

  • [tex] \tt \sqrt{4x + 15} = 3 \sqrt{x} [/tex]

let's solve:

[tex] \tt \sqrt{4x + 15} = 3 \sqrt{x} [/tex]

  1. [tex] \sf square \: both \: sides : \\ ( \sqrt{4x + 15} {)}^{2} = (3 \sqrt{x} {)}^{2} \\ 4x + 15 = 9x[/tex]
  2. [tex] \sf cancel \: 9x \: from \: both \: sides : \\ 4x + 15 - 9x = 9x - 9x \\ - 5x + 15 = 0[/tex]
  3. [tex] \sf cancel \: 15 \: from \: both \: sides : \\ - 5x + 15 - 15 = 0 - 15 \\ - 5x = - 15[/tex]
  4. [tex] \sf \: divide \: both \: sides \: by \: - 5 : \\ \frac{ - 5x}{ - 5} = \frac{ - 15}{ - 5} \\ \therefore \: x = 3[/tex]