Respuesta :

Answer:

Step-by-step explanation:

Picture 1

In right triangle ABC,

Side AB is the opposite side of angle C.

Picture 2

In triangle MKL,

tan(∠M) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

             = [tex]\frac{KL}{KM}[/tex]

             = [tex]\frac{15}{8}[/tex]

Option (1) is the answer.

Picture 3

In ΔXYZ,

sin(∠Z) = [tex]\frac{\text{Opposite side}}{\text{Hypotenuse}}[/tex]

            = [tex]\frac{XY}{XZ}[/tex]

For the length of XY we will apply Pythagoras theorem in ΔXYZ,

XZ² = XY² + YZ²

XY² = XZ² - YZ²

      = (40)² - (32)²

XY = √576

     = 24

sin(Z) = [tex]\frac{24}{40}[/tex]

sin(Z) = [tex]\frac{3}{5}[/tex]

Picture 4

In right triangle DEF,

Cos(D) = [tex]\frac{\text{Adjacent side}}{\text{Hypotenuse}}[/tex]

           = [tex]\frac{EF}{DF}[/tex]

           = [tex]\frac{75}{72}[/tex]

           = [tex]\frac{25}{24}[/tex]

Picture 5

In ΔABC,

tan(63°) = [tex]\frac{\text{Opposite side}}{\text{Adjacent side}}[/tex]

tan(63°) = [tex]\frac{BC}{AB}[/tex]

AB = [tex]\frac{BC}{\text{tan}(63)}[/tex]

AB = [tex]\frac{8}{\text{tan}(63)}[/tex]

AB = 4.0762 ≈ 4 m

Option (3) will be the answer.