Respuesta :

Answer:

The answer is "169.56 units".

Explanation:

Given:

[tex]\to r= 9 \\\\ \to \theta = 360^{\circ} - 120^{\circ} = 240^{\circ}[/tex]

[tex]= \frac{ 2 \pi }{360^{\circ}} \times 120\\\\= \frac{ 2 \times 3.14 }{360^{\circ}} \times 120\\\\= \frac{ 2 \times 3.14 }{360^{\circ}} \times 120\\\\=2.093333333333333333333[/tex]

Calculating the area of the sector:

[tex]=\pi \ r^2 - \pi r^2 \frac{\theta }{360}\\\\=\pi \ r^2(1 - \frac{120}{360})\\\\=\pi \ r^2(\frac{360-120}{360})\\\\=3.14 \times 9^2(\frac{240}{360})\\\\=3.14 \times 81 \times (\frac{2}{3})\\\\=6.28 \times 27 \\\\=169.56 \ \[/tex]

The area of the shaded sector is 84.78 units².

Area of a sector

  • area = ∅/ 360 × πr²

where

r = radius

∅ = centre angle

Therefore,

r = 9 units

∅ = 120°

area of the sector = 120 / 360 × 3.14 × 9²

area of the sector =  120 / 360 × 3.14 × 81

area of the sector = 30520.8 / 360

area of the sector = 84.78 units

Therefore, the area of the shaded sector is 84.78 units².

learn more on sector here:https://brainly.com/question/1582027