Answer:
The coordinates of the point S could be;
A. (-1, -1)
Step-by-step explanation:
The given parameters are;
The ratio of the length of the line RS to the length of the line RT = 1:2
The coordinates of point R = (2. 5)
The coordinates point T = (-4, -7)
Therefore, we have;
[tex]\dfrac{The \ length \ of \, RS}{The \ length \ of \, RT} = \dfrac{1}{2}[/tex]
[tex]\therefore {The \ length \ of \, RS} = \dfrac{1}{2} \times The \ length \ of \, RT[/tex]
The length of the line RT = √(((2 - (-4))² + (5 - (-7))²) = 6·√5
Therefore, we have;
[tex]{The \ length \ of \, RS} = \dfrac{1}{2} \times 6\cdot \sqrt{5} = 3 \cdot \sqrt{5}[/tex]
When the coordinates of the point S = (-1, -1), we have;
The length of the line RS = √(((2 - (-1))² + (5 - (-1))²) = √45 = 3·√5
Therefore, the coordinates of the point S could be (-1, -1)