Respuesta :

Answer:

[tex]12.25\pi\,\,m^2[/tex]

Step-by-step explanation:

Given: Circumference of a circle = [tex]7\pi\,\,m[/tex]

To find: Area of a circle in terms of [tex]\pi[/tex]

Solution:

Let r denotes radius of a circle.

Circumference of a circle = [tex]2\pi r[/tex]

[tex]7\pi=2\pi r\\7=2r[/tex]

Divide both side by [tex]\pi[/tex]

[tex]3.5\,m=r[/tex]

Area of a circle = [tex]\pi r^2[/tex]

Put [tex]r=3.5\,\,m[/tex]

[tex]=\pi (3.5)^2\\=12.25\pi\,\,m^2[/tex]

Answer:

A ≈ 3.9

Step-by-step explanation:

 How to solve

  • Using the formulas

A=πr2

C=2πr

  • Solving for A

A=C2

4π=72

4·π ≈ 3.8993

Therefore, the circle in square meters in the nearest tenths is A ≈ 3.9