Respuesta :
Answer:
[tex]12.25\pi\,\,m^2[/tex]
Step-by-step explanation:
Given: Circumference of a circle = [tex]7\pi\,\,m[/tex]
To find: Area of a circle in terms of [tex]\pi[/tex]
Solution:
Let r denotes radius of a circle.
Circumference of a circle = [tex]2\pi r[/tex]
[tex]7\pi=2\pi r\\7=2r[/tex]
Divide both side by [tex]\pi[/tex]
[tex]3.5\,m=r[/tex]
Area of a circle = [tex]\pi r^2[/tex]
Put [tex]r=3.5\,\,m[/tex]
[tex]=\pi (3.5)^2\\=12.25\pi\,\,m^2[/tex]
Answer:
A ≈ 3.9
Step-by-step explanation:
How to solve
- Using the formulas
A=πr2
C=2πr
- Solving for A
A=C2
4π=72
4·π ≈ 3.8993
Therefore, the circle in square meters in the nearest tenths is A ≈ 3.9