Respuesta :

Answer:

[tex]O = 14^\circ[/tex]

Step-by-step explanation:

Given

[tex]\angle Q = 90[/tex]

[tex]OP = 96[/tex]

[tex]PQ = 23[/tex]

Required

Find [tex]\angle O[/tex] to the nearest degree

To calculate O, we make use of:

[tex]sin(O) = \frac{PQ}{PO}[/tex] --- See attachment for triangle

[tex]sin(O) = \frac{23}{96}[/tex]

[tex]sin(O) = 0.2396[/tex]

Take arcsin of both sides

[tex]O = sin^{-1}(0.2396)[/tex]

[tex]O = 14^\circ[/tex] -- approximated