Respuesta :
Answer:
[tex]EA9_{16} = 3753[/tex]
[tex]CB2_{16} = 3250[/tex]
[tex](1011 1110 1101 1011 1010)_2 = 781754[/tex]
[tex](1010 1000 1011 1000 1110 1101)_2 = 11057389[/tex]
[tex](1011 1110 1101 1011 1010)_2 = BEDBA[/tex]
[tex](1010 1000 1011 1000 1110 1101)_2 = A8B8ED[/tex]
[tex]74510_8= 221416[/tex]
[tex]67210_8 = 203212[/tex]
Explanation:
Solving (a): To base 10
[tex](i)\ EA9_{16[/tex]
We simply multiply each digit by a base of 16 to the power of their position.
i.e.
[tex]EA9_{16} = E * 16^2 + A * 16^1 + 9 * 16^0[/tex]
[tex]EA9_{16} = E * 256 + A * 16 + 9 * 1[/tex]
In hexadecimal
[tex]A = 10; E = 14[/tex]
So:
[tex]EA9_{16} = 14 * 256 + 10 * 16 + 9 * 1[/tex]
[tex]EA9_{16} = 3753[/tex]
[tex](ii)\ CB2_{16}[/tex]
This gives:
[tex]CB2_{16} = C * 16^2 + B * 16^1 + 2 * 16^0[/tex]
[tex]CB2_{16} = C * 256 + B * 16 + 2 * 1[/tex]
In hexadecimal
[tex]C = 12; B =11[/tex]
So:
[tex]CB2_{16} = 12 * 256 + 11 * 16 + 2 * 1[/tex]
[tex]CB2_{16} = 3250[/tex]
Solving (b): To base 10
[tex](i)\ (1011 1110 1101 1011 1010)_2[/tex]
We simply multiply each digit by a base of 2 to the power of their position.
i.e.
[tex](1011 1110 1101 1011 1010)_2 = 1 * 2^{19} + 0 * 2^{18} + 1 * 2^{17} + 1 * 2^{16} +1 * 2^{15} + 1 * 2^{14} + 1 * 2^{13} + 0 * 2^{12} + 1 * 2^{11} + 1 * 2^{10} + 0 * 2^9 + 1 * 2^8 +1 * 2^7 + 0 * 2^6 + 1 * 2^5 + 1 * 2^4 + 1 * 2^3 + 0 * 2^2 + 1 * 2^1 + 0 * 2^0[/tex]
[tex](1011 1110 1101 1011 1010)_2 = 781754[/tex]
[tex](ii)\ (1010 1000 1011 1000 1110 1101)_2[/tex]
[tex](1010 1000 1011 1000 1110 1101)_2 = 1 * 2^{23} + 0 * 2^{22} + 1 * 2^{21} + 0 * 2^{20} +1 * 2^{19} + 0 * 2^{18} + 0 * 2^{17} + 0 * 2^{16} + 1 * 2^{15} + 0 * 2^{14} + 1 * 2^{13} + 1 * 2^{12} +1 * 2^{11} + 0 * 2^{10} + 0 * 2^9 + 0 * 2^8 + 1 * 2^7 + 1 * 2^6 + 1 * 2^5 + 0 * 2^4 + 1*2^3 + 1 * 2^2 + 0 * 2^1 + 1 * 2^0[/tex]
[tex](1010 1000 1011 1000 1110 1101)_2 = 11057389[/tex]
Solving (c): To base 16
[tex]i.\ (1011 1110 1101 1011 1010)_2[/tex]
First, convert to base 10
In (b)
[tex](1011 1110 1101 1011 1010)_2 = 781754[/tex]
Next, is to divide 781754 by 16 and keep track of the remainder
[tex]781754/16\ |\ 48859\ R\ 10[/tex]
[tex]48859/16\ |\ 3053\ R\ 11[/tex]
[tex]3053/16\ |\ 190\ R\ 13[/tex]
[tex]190/16\ |\ 11\ R\ 14[/tex]
[tex]11/16\ |\ 0\ R\ 11[/tex]
Write out the remainder from bottom to top
[tex](11)(14)(13)(11)(10)[/tex]
In hexadecimal
[tex]A = 10; B = 11; C = 12; D = 13; E = 14; F = 15.[/tex]
[tex](11)(14)(13)(11)(10)=BEDBA[/tex]
So:
[tex](1011 1110 1101 1011 1010)_2 = BEDBA[/tex]
[tex]ii.\ (1010 1000 1011 1000 1110 1101)_2[/tex]
In b
[tex](1010 1000 1011 1000 1110 1101)_2 = 11057389[/tex]
Next, is to divide 11057389 by 16 and keep track of the remainder
[tex]11057389/16\ |\ 691086\ R\ 13[/tex]
[tex]691086/16\ |\ 43192\ R\ 14[/tex]
[tex]43192/16\ |\ 2699\ R\ 8[/tex]
[tex]2699/16\ |\ 168\ R\ 11[/tex]
[tex]168/16\ |\ 10\ R\ 8[/tex]
[tex]10/16\ |\ 0\ R\ 10[/tex]
Write out the remainder from bottom to top
[tex](10)8(11)8(14)(13)[/tex]
In hexadecimal
[tex]A = 10; B = 11; C = 12; D = 13; E = 14; F = 15.[/tex]
[tex](10)8(11)8(14)(13) = A8B8ED[/tex]
So:
[tex](1010 1000 1011 1000 1110 1101)_2 = A8B8ED[/tex]
Solving (d): To octal
[tex](i.)\ 74510[/tex]
Divide 74510 by 8 and keep track of the remainder
[tex]74510/8\ |\ 9313\ R\ 6[/tex]
[tex]9313/8\ |\ 1164\ R\ 1[/tex]
[tex]1164/8\ |\ 145\ R\ 4[/tex]
[tex]145/8\ |\ 18\ R\ 1[/tex]
[tex]18/8\ |\ 2\ R\ 2[/tex]
[tex]2/8\ |\ 0\ R\ 2[/tex]
Write out the remainder from bottom to top
[tex]74510_8= 221416[/tex]
[tex](ii.)\ 67210[/tex]
Divide 67210 by 8 and keep track of the remainder
[tex]67210/8\ |\ 8401\ R\ 2[/tex]
[tex]8401/8\ |\ 1050\ R\ 1[/tex]
[tex]1050/8\ |\ 131\ R\ 2[/tex]
[tex]131/8\ |\ 16\ R\ 3[/tex]
[tex]16/8\ |\ 2\ R\ 0[/tex]
[tex]2/8\ |\ 0\ R\ 2[/tex]
Write out the remainder from bottom to top
[tex]67210_8 = 203212[/tex]