Respuesta :
Answer:
(a) The equation for the number of bacteria at time t ≥ 0 is [tex]y = 200\cdot e^{0.5 \cdot t }[/tex]
(b) The average population in the bacteria for 0 ≤ t ≤ 10 is 29,482 bacteria
(c) The growth rate of the bacteria in the first 10 hours is 14,841 Bacteria/hour
Step-by-step explanation:
(a) The given rate of growth of the bacteria population is;
[tex]\dfrac{dy}{dt} = 0.5 \cdot y[/tex]
The initial amount of bacteria = 200
At time, t ≥ 0, we have;
[tex]\dfrac{dy}{y} = 0.5 \cdot dt[/tex]
[tex]\int\limits {\dfrac{dy}{y} } = \int\limits {0.5} \, dt[/tex]
ln(y) = 0.5·t + C
[tex]y = e^{0.5 \cdot t + C}[/tex]
[tex]y = C_1 \cdot e^{0.5 \cdot t }[/tex]
When, t = 0, y = 200, we have;
[tex]200 = C_1 \cdot e^{0.5 \times 0 } = C_1[/tex]
C₁ = 200
The equation for the number of bacteria at time t ≥ 0 is therefore given as follows;
[tex]y = 200\cdot e^{0.5 \cdot t }[/tex]
(b) The expression for the average number of bacteria in the population for 0 ≤ t ≤ 10 is given as follows;
[tex]y = \int\limits^t_0 {0.5 \cdot y} \, dt[/tex]
[tex]y = \int\limits^{10}_0 {0.5 \cdot 200\cdot e^{0.5 \cdot t }} \, dt = \left[200\cdot e^{0.5 \cdot t }\right]^{10}_0 \approx 2,9682.6 - 200 = 29,482.6[/tex]
The average population in the bacteria for 0 ≤ t ≤ 10 is therefore, y = 29,482
(c) The average rate of growth after 10 hours of growth is given as follows;
[tex]\dfrac{dy}{dt} = 0.5 \cdot y[/tex]
[tex]\dfrac{dy}{dt} = 0.5 \cdot 200\cdot e^{0.5 \cdot 10 } = 14,841.32 \ Bacteria/hour[/tex]
The growth rate of the bacteria in the first 10 hours is 14,841 Bacteria/hour
Population functions can either represent growth or decays.
The given parameter is:
[tex]\frac{dy}{dt}= 0.5y[/tex]
(a) Solve for y
We have:
[tex]\frac{dy}{dt}= 0.5y[/tex]
Integrate both sides
[tex]\int \frac{dy}{dt}= \int 0.5y[/tex]
Divide both sides by y, and multiply both sides by dt
[tex]\int \frac{dy}{y}= \int 0.5\ dt[/tex]
Integrate both sides of the equation
[tex]\ln(y) = 0.5t +c[/tex]
Take the exponent of both sides
[tex]y = e^{0.5t +c}[/tex]
This gives
[tex]y = ce^{0.5t}[/tex]
When t = 0, and y = 200.
So, we have:
[tex]200 = ce^{0.5 \times 0}[/tex]
[tex]200 = ce^{0}[/tex]
Evaluate the exponent
[tex]200 = c[/tex]
Rewrite as:
[tex]c = 200[/tex]
Substitute 200 for c in [tex]y = ce^{0.5t}[/tex]
[tex]y = 200e^{0.5t}[/tex]
Hence, the equation for y is [tex]y = 200e^{0.5t}[/tex]
(b) The average number of bacterial for 0 ≤ t ≤ 10.
The average value of the function is calculated as:
[tex]y' = y(10) - y(0)[/tex]
Calculate y(0) and y(10)
[tex]y = 200e^{0.5t}[/tex]
[tex]y(0) = 200e^{0.5(0)}= 200[/tex]
[tex]y(10) = 200e^{0.5\times 10} =29682.6318205[/tex]
So, we have
[tex]y' = y(10) - y(0)[/tex]
[tex]y' = 29682.6318205 - 200[/tex]
[tex]y' = 29482.6318205}[/tex]
[tex]y' = 29483[/tex]
Hence, The average number of bacterial for 0 ≤ t ≤ 10 is 29483
(c) The average rate over the first 10 hours of growth
We have:
[tex]\frac{dy}{dt}= 0.5y[/tex]
Substitute [tex]y = 200e^{0.5t}[/tex]
[tex]\frac{dy}{dt}= 0.5 \times 200e^{0.5t}[/tex]
[tex]\frac{dy}{dt}= 100e^{0.5t}[/tex]
When t = 10, we have:
[tex]\frac{dy}{dt}= 100e^{0.5 \times 10}[/tex]
[tex]\frac{dy}{dt}= 100e^{5}[/tex]
[tex]\frac{dy}{dt}= 14841[/tex]
Hence, the average rate over the first 10 hours of growth is 14841
Read more about population growth functions at:
https://brainly.com/question/20115298