Segment JL has endpoints J(-3, -4) and L(7, 6). What are the coordinate of point K, so that point K is on line segment JL and JK = 3/5 JL. Explain.​

Respuesta :

Answer:

K(3,2).

Step-by-step explanation:

We want to find a point K(x,y).

JK = 3/5 JL.

This means that:

[tex]K - J = \frac{3(L - J)}{5}[/tex]

We use this to find both the x-coordinate and the y-coordinate of K.

x-coordinate:

x-coordinate of J: -3

x-coordinate of L: 7

[tex]K - J = \frac{3(L - J)}{5}[/tex]

[tex]x - (-3) = \frac{3(7 - (-3))}{5}[/tex]

[tex]x + 3 = 6[/tex]

[tex]x = 3[/tex]

y-coordinate:

y-coordinate of J: -4

y-coordinate of L: 6

[tex]K - J = \frac{3(L - J)}{5}[/tex]

[tex]y - (-4) = \frac{3(6 - (-4))}{5}[/tex]

[tex]y + 4 = 6[/tex]

[tex]y = 2[/tex]

The point is K(3,2).