Respuesta :

Answer:

[tex]\frac{140}{3}, \frac{140}{3}, \frac{140}{3}[/tex]

Step-by-step explanation:

Let the numbers be [tex]x, y\ and\ z.[/tex]

Such that:

[tex]x + y + z = 140[/tex]

Make z the subject

[tex]z = 140 -x - y[/tex]

For their product to be maximum, we have:

[tex]f(x,y,z) = xyz[/tex]

Substitute [tex]z = 140 -x - y[/tex] in [tex]f(x,y,z) = xyz[/tex]

[tex]f(x,y) = xy(140 - x - y)[/tex]

Open bracket

[tex]f(x,y) = 140xy - x^2y - xy^2[/tex]

Differentiate w.r.t x and y

[tex]f_x=140y - 2xy - y^2[/tex]

[tex]f_y=140x - x^2 - 2xy[/tex]

Since the products are maximum, then [tex]f_x = f_y = 0[/tex]

For [tex]f_x=140y - 2xy - y^2[/tex]

[tex]140y - 2xy - y^2 = 0[/tex]

Factorize:

[tex]y(140 - 2x - y) = 0[/tex]

Split

[tex]y = 0\ or\ 140 - 2x - y = 0[/tex]

Make y the subject

[tex]y = 0\ or\ y = 140 - 2x[/tex]

For [tex]f_y=140x - x^2 - 2xy[/tex]

[tex]140x - x^2 - 2xy = 0[/tex]

---------------------------------------------------

Substitute y = 0

[tex]140x - x^2 -2x*0 = 0[/tex]

[tex]140x - x^2 = 0[/tex]

Factorize

[tex]x(140 - x)= 0[/tex]

[tex]x = 0\ or\ 140-x = 0[/tex]

[tex]x = 0\ or\ x = 140[/tex]

---------------------------------------------------

Substitute [tex]y = 140 - 2x[/tex]

[tex]140x - x^2 - 2xy = 0[/tex]

[tex]140x - x^2 - 2x(140 - 2x) = 0[/tex]

[tex]140x - x^2 - 280x + 4x^2 = 0[/tex]

Re-arrange

[tex]4x^2 -x^2 +140x - 280x = 0[/tex]

[tex]3x^2 -140x = 0[/tex]

Factor x out

[tex]x(3x - 140) = 0[/tex]

Divide through by x

[tex]3x - 140 = 0[/tex]

[tex]3x = 140[/tex]

[tex]x = \frac{140}{3}[/tex]

Recall that: [tex]y = 140 - 2x[/tex]

[tex]y = 140 - 2 * \frac{140}{3}[/tex]

[tex]y = 140 - \frac{280}{3}[/tex]

Take LCM

[tex]y = \frac{140*3-280}{3}[/tex]

[tex]y = \frac{140}{3}[/tex]

Recall that:

[tex]z = 140 -x - y[/tex]

[tex]z = 140 - \frac{140}{3} - \frac{140}{3}[/tex]

Take LCM

[tex]z = \frac{3 * 140- 140 - 140}{3}[/tex]

[tex]z = \frac{140}{3}[/tex]

Hence, the numbers are:

[tex]\frac{140}{3}, \frac{140}{3}, \frac{140}{3}[/tex]