Answer:
Explanation:
The missing part of the question is attached in the diagram below, the second diagram shows the schematic view of the stress-strain curve and the plane stress.
From the given information:
The elastic modulus is:
[tex]E = \dfrac{\sigma}{\varepsilon} \\ \\ E = \dfrac{150 \ MPa}{0.0217} \\ \\ E = 69.124 \ GPa[/tex]
Hence, suppose 0.2% offset cuts the stress-strain curve at a designated point A from the image attached below, then the yield strength relating to the stress axis from the curve will be [tex]\sigma_y[/tex] = 270 MPa.
The shear yield strength by using von Mises criteria is estimated as;
[tex]\tau_1 = \dfrac{\sqrt{2}}{3}\sigma_y \\ \\ \tau_1 = \dfrac{\sqrt{2}}{3}*270 \\ \\ \tau_1 = 127.28 \ MPa[/tex]
The shear yield strength by using Tresca criteria is:
[tex]\tau_2 = \dfrac{1}{2}\sigma_y \\ \\ \tau_2= \dfrac{1}{2}*270 \\ \\ \tau_2 = 135 \ MPa[/tex]