A long, uninsulated steam line with a diameter of 100 mm and a surface emissivity of 0.8 transports steam at 150°C and is exposed to atmospheric air and large surroundings at an equivalent temperature of 20°C. (a) Calculate the rate of heat loss per unit length for a calm day. (b) Calculate the rate of heat loss on a breezy day when the wind speed is 8

Respuesta :

Answer:

Heat loss per unit length = 642.358 W/m

The heat loss per unit length on a breezy day during 8 m/s speed is = 1760.205 W/m

Explanation:

From the information given:

Diameter D [tex]= 100 mm = 0.1 m[/tex]

Surface emissivity ε = 0.8

Temperature of steam [tex]T_s[/tex] = 150° C = 423K

Atmospheric air temperature [tex]T_{\infty} = 20^0 \ C = 293 \ K[/tex]

Velocity of wind V = 8 m/s

To calculate average film temperature:

[tex]T_f = \dfrac{T_s+T_{\infty}}{2}[/tex]

[tex]T_f = \dfrac{423+293}{2}[/tex]

[tex]T_f = \dfrac{716}{2}[/tex]

[tex]T_f = 358 \ K[/tex]

To calculate volume expansion coefficient

[tex]\beta= \dfrac{1}{T_f} \\ \\ \beta= \dfrac{1}{358} \\ \\ \beta= 2.79 \times 10^{-3} \ K^{-1}[/tex]

From the table of "Thermophysical properties of gases at atmospheric pressure" relating to 358 K of average film temperature; the following data are obtained;

Kinematic viscosity (v) = 21.7984 × 10⁻⁶ m²/s

Thermal conductivity k = 30.608 × 10⁻³ W/m.K

Thermal diffusivity ∝ = 31.244 × 10⁻⁶ m²/s

Prandtl no. Pr = 0.698

Rayleigh No. for the steam line is determined as follows:

[tex]Ra_{D} = \dfrac{g \times \beta (T_s-T_{\infty}) \times D_b^3}{\alpha\times v}[/tex]

[tex]Ra_{D} = \dfrac{9.8 \times (2.79 *10^{-3})(150-20) \times (0.1)^3}{(31.244\times 10^{-6}) \times (21.7984\times 10^{-6})}[/tex]

[tex]Ra_{D} = 5.224 \times 10^6[/tex]

The average Nusselt number is:

[tex]Nu_D = \Big \{ 0.60 + \dfrac{0.387(Ra_D)^{1/6}}{[ 1+ (0.559/Pr)^{9/16}]^{8/27}} \Big \}^2[/tex]

[tex]Nu_D = \Big \{ 0.60 + \dfrac{0.387(5.224\times 10^6)^{1/6}}{[ 1+ (0.559/0.698)^{9/16}]^{8/27}} \Big \}^2[/tex]

[tex]Nu_D = \Big \{ 0.60 + \dfrac{5.0977}{[ 1.8826]^{8/27}}\Big \}^2[/tex]

[tex]Nu_D = \Big \{ 0.60 + 4.226 \Big \}^2[/tex]

[tex]Nu_D = 23.29[/tex]

However, for the heat transfer coefficient; we have:

[tex]h_D = \dfrac{Nu_D\times k}{D_b} \\ \\ h_D = \dfrac{(23.29) \times (30.608 \times 10^{-3} )}{0.1}[/tex]

[tex]h_D = 7.129 \ Wm^2 .K[/tex]

Hence, Stefan-Boltzmann constant [tex]\sigma = 5.67 \times 10^{-8} \ W/m^2.K^4[/tex]

Now;

To determine the heat loss using the formula:

[tex]q'_b = q'_{ev} + q'_{rad} \\ \\ q'_b = h_D (\pi D_o) (T_t-T_{\infty})+\varepsilon(\pi D_b)\sigma (T_t^4-T_{\infty }^4)[/tex]

[tex]q'_b = (7.129)(\pi*0.1) (423-293) + (0.8) (\pi*0.1) (5.67 *10^{-8}) (423^4-293^4) \\ \\ q'_b = 291.153 + 351.205 \\ \\ \mathbf{q'_b = 642.258 \ W/m}[/tex]

Now; here we need to determine the Reynold no and the average Nusselt number:

[tex]Re_D = \dfrac{VD_b}{v } \\ \\ Re_D = \dfrac{8 *0.1}{21.7984 \times 10^{-6}} \\ \\ Re_D = 3.6699 \times 10^4[/tex]

However, to determine the avg. Nusselt no by using Churchill-Bernstein correlation, we have;

[tex]Nu_D = 0.3 + \dfrac{0.62 \times Re_D^{1/2}* Pr^{1/3}}{[1+(0.4/Pr)^{2/3}]^{1/4}} [1+ (\dfrac{Re_D}{282000})^{5/8}]^{4/5}[/tex]

[tex]Nu_D = 0.3 + \dfrac{0.62 \times (3.6699*10^4)^{1/2}* (0.698)^{1/3}}{[1+(0.4/0.698)^{2/3}]^{1/4}} [1+ (\dfrac{3.669*10^4}{282000})^{5/8}]^{4/5}[/tex]

[tex]Nu_D = (0.3 +\dfrac{105.359}{1.140}\times 1.218) \\ \\ Nu_D = 112.86[/tex]

SO, the heat transfer coefficient for forced convection is determined as follows afterward:

[tex]h_D = \dfrac{Nu_{D}* k}{D_b} \\ \ h_D = \dfrac{112.86*30.608 *10^{-3}}{0.1} \\ \\ h_D = 34.5 \ W/m^2 .K[/tex]

Finally; The heat loss per unit length on a breezy day during 8 m/s speed is:

[tex]q'b = h_D (\pi D_b) (T_s-T_{\infty}) + \varepsilon (\pi D_b) \sigma (T_s^4-T_ {\infty}^4) \\ \\ q'b = (34.5) (\pi *0.1) (423-293) + (0.8) (\pi*0.1) (5.67*10^{-8}) (423^4 - 293^4) \\ \\ = 1409 +351.205 \\ \\ \mathbf{q'b = 1760.205 \ W/m}[/tex]