Respuesta :

Answer:

Step-by-step explanation:

m= (3x-1), n= (3x+1)

LHS= x²

RHS= mn+1/9

= [tex]\frac{(3x+1)(3x-1)+1}{9}[/tex]

= [tex]\frac{((3x^{2} )-1^{2})+1 }{9}[/tex]

=[tex]\frac{9x^{2} -1+1}{9}[/tex]

=[tex]\frac{9x^{2} }{9}[/tex]

=x²/1= x²

∴LHS=x²=x²= RHS

Hence proved