Answer:
Step-by-step explanation:
m= (3x-1), n= (3x+1)
LHS= x²
RHS= mn+1/9
= [tex]\frac{(3x+1)(3x-1)+1}{9}[/tex]
= [tex]\frac{((3x^{2} )-1^{2})+1 }{9}[/tex]
=[tex]\frac{9x^{2} -1+1}{9}[/tex]
=[tex]\frac{9x^{2} }{9}[/tex]
=x²/1= x²
∴LHS=x²=x²= RHS
Hence proved