Answer:
[tex] \huge \boxed{ \red{ \boxed{c)78 \: units ^{2} }}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
tips and formulas:
- [tex] \rm \:A_{shaded}= \dfrac{\theta}{360} \times \pi {r}^{2} [/tex]
let's solve:
- [tex] \sf sustitute \: the \: value \: of \: \theta \: and \: r : \\ A_{shaded} = \frac{140}{360} \times \pi \times {8}^{2} [/tex]
- [tex] \sf simpify \: squre : \\ A_{shaded} = \frac{140}{360} \times \pi \times 64[/tex]
- [tex] \sf simpify \: fraction: \\ A_{shaded} = \frac{7}{18} \times \pi \times 64[/tex]
- [tex] \sf reduce \: 64: \\ A_{shaded} = \frac{7}{ \cancel{ \: 18} \: ^{9} } \times \pi \times \cancel{ 64} \: ^{32} \\ A_{shaded} = \frac{7}{9} \times \pi \times 32\\ A_{shaded} = \frac{224\pi}{9} [/tex]
[tex]\large A_{shaded}\approx 78 \: square \: units [/tex]