5E. Given ▲ABC with vertices A(2, -1), B(5, 6), and C(-1, 4) as shown. Find the number of square units in the area of ▲ABC in the simplest form.

Respuesta :

Answer:

Area = 18 square units

Step-by-step explanation:

Given

[tex]A =(2,-1)[/tex] --- [tex](x_1,y_1)[/tex]

[tex]B =(5,6)[/tex] --- [tex](x_2,y_2)[/tex]

[tex]C = (-1,4)[/tex] --- [tex](x_3,y_3)[/tex]

Required

The area of the triangle

This is calculated as:

[tex]Area = \frac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) +x_3(y_1 - y_2)|[/tex]

[tex]Area = \frac{1}{2} * |2(6 - 4) + 5(4 - -1) -1(-1 -6)|[/tex]

[tex]Area = \frac{1}{2} * |2*2 + 5*5 -1*-7|[/tex]

[tex]Area = \frac{1}{2} * |36|[/tex]

[tex]Area = \frac{1}{2} * 36[/tex]

Area = 18 square units