Answer:
[tex]4[/tex]
Step-by-step explanation:
Given: [tex]f(x)=4x-2[/tex]
To find: average rate of change of the function [tex]f(x)=4x-2[/tex] over the interval [tex]x=-1[/tex] and [tex]x=2[/tex]
Solution:
Take [tex]a=-1,\,b=2[/tex]
Find [tex]f(a),\,f(b)[/tex]
[tex]f(a)=f(-1)\\=4(-1)-2\\=-4-2\\=-6\\\\f(b)=f(2)\\=4(2)-2\\=8-2\\=6[/tex]
Average rate of change of the function [tex]=\frac{f(b)-f(a)}{b-a}[/tex]
[tex]=\frac{f(2)-f(-1)}{2-(-1)}\\\\=\frac{6-(-6)}{3} \\\\=\frac{12}{3}\\\\=4[/tex]