Respuesta :

________________________________

Circumference = 21 + 2.5 π

Or, 2×π×r = 21 + 2.5 π

[tex]or, \: \pi \times r = \frac{21 + 2.5 π}{2} [/tex]

[tex]or, \: \pi \times r = \frac{21}{2} + \frac{25\pi}{2} [/tex]

[tex]or, \: r \: = ( \frac{21}{2} + \frac{25\pi}{2} ) \div \frac{22}{7} [/tex]

[tex]or, \: r = (\frac{7}{22} \times \frac{21}{2} ) + ( \frac{7}{22} \times \frac{2.5\pi}{2} )[/tex]

[tex]or, \: r = (\frac{7}{22} \times \frac{21}{2} ) + ( \frac{7}{22} \times \frac{2.5}{2} \times \frac{22}{7} )[/tex]

[tex]or, \: r = (\frac{7}{22} \times \frac{21}{2} ) + ( \frac{2.5}{2} )[/tex]

[tex]or, \: r = ( \frac{147}{44} ) + ( \frac{55}{44} )[/tex]

[tex]or, \: r = ( \frac{101}{22} )[/tex]

________________________________

Now, area of the circle

= π

[tex] = \frac{22}{7} \times \ { \frac{101}{22} }^{2} [/tex]

[tex] = \frac{22}{7} \times \ { \frac{101}{22} } \times \frac{101}{22} [/tex]

[tex] = { \frac{101}{7} } \times \frac{101}{22} [/tex]

[tex] = \frac{10201}{154} [/tex]

[tex] = 66.24[/tex]

________________________________