Multiply : root(6, x) * root(4, y ^ 3) Rewrite the expression using rational exponents with a common denominator x * y ^ (11/2) x ^ (2/12) * y ^ (9/12) x ^ - 6 * y ^ (3/4)

Respuesta :

Answer: B. x ^ 2/12 * y ^9/12

Step-by-step explanation:

Just got it correct on Edge.

Ver imagen sweetchrono

The expression as a rational exponent is [tex]x^{\frac{2}{12} }y^{\frac{9}{12}[/tex]

Given the indices;

[tex]\sqrt[6]{x} \times \sqrt[4]{y^3}[/tex]

According to the laws of indices

[tex]\sqrt[n]{x} = x^{\frac{1}{n} }[/tex]

Applying this to solve the given question will give;

[tex]\sqrt[6]{x} \times \sqrt[4]{y^3}\\= x^{\frac{1}{6} }\times y^{\frac{3}{4}} \\= (x^{\frac{1}{6} }) ^{\frac{2}{2} } (\times y^{\frac{3}{4}})^{\frac{3}{3} } \\\\=x^{\frac{2}{12} }y^{\frac{9}{12} }[/tex]

Hence the expression as a rational exponent is [tex]x^{\frac{2}{12} }y^{\frac{9}{12}[/tex]

Learn more on indices here; https://brainly.com/question/8952483