Respuesta :

Answer:

The shorter leg, s, is the geometric mean between h and m

The longer leg, b, is the geometric mean between h and n

Step-by-step explanation:

By the right triangle geometric mean theorem, we have;

The altitude of a right triangle, 'h', which intersects with the hypotenuse side of the right triangle at a point such that it creates two segments, 'a' and 'b' on the hypotenuse side , then we have;

h = √(a·b)

Therefore, we have;

Description      [tex]{}[/tex]                                                                                 Proportion

The altitude of ΔAYES is the geometric mean between m and n   [tex]\dfrac{m}{a} =\dfrac{a}{n}[/tex]

a² = m·n → a = √(m·n)

The shorter leg, s, is the geometric mean between h and m   [tex]\dfrac{m}{s} =\dfrac{s}{h}[/tex]

s² = m·h → s = √(m·h)

The longer leg, b, is the geometric mean between h and n   [tex]\dfrac{n}{b} =\dfrac{b}{h}[/tex]

b² = n·h → s = √(n·h)