Respuesta :
Answer:
[tex](a)[/tex] [tex]P(x) = 0.02x^2 +50x - 100[/tex]
[tex](b)[/tex] [tex]Average = 0.02x + 50 - \frac{100}{x}[/tex] and [tex]Marginal = 0.04x + 50[/tex]
[tex](c)[/tex] [tex]Average = 59.8[/tex] and [tex]Marginal = 70[/tex]
(d) See Explanation
Step-by-step explanation:
Given
[tex]p(x) = 100[/tex]
[tex]C(x) = -0.02x^2 +50x +100[/tex]
Solving (a) Profit function; P(x)
[tex]P(x) = xp(x) - C(x)[/tex]
This gives:
[tex]P(x) = x*100 - (-0.02x^2 + 50x + 100)[/tex]
[tex]P(x) = 100x + 0.02x^2 - 50x - 100[/tex]
Collect like terms
[tex]P(x) = 0.02x^2 - 50x +100x - 100[/tex]
[tex]P(x) = 0.02x^2 +50x - 100[/tex]
Solving (b): Average profit function and Marginal profit function
[tex]Average = \frac{P(x)}{x}[/tex]
This gives:
[tex]Average = \frac{0.02x^2 + 50x - 100}{x}[/tex]
Break down the fraction
[tex]Average = \frac{0.02x^2}{x} + \frac{50x}{x} - \frac{100}{x}[/tex]
[tex]Average = 0.02x + 50 - \frac{100}{x}[/tex]
[tex]Marginal = \frac{dP}{dx}[/tex]
[tex]P(x) = 0.02x^2 +50x - 100[/tex]
Differentiate
[tex]\frac{dP}{dx} = 2 * 0.02x + 50 - 0[/tex]
[tex]\frac{dP}{dx} = 0.04x + 50[/tex]
Hence:
[tex]Marginal = 0.04x + 50[/tex]
Solving (c): Average profit and Marginal profit if x = a
[tex]a = 500[/tex]
So:
[tex]x =500[/tex]
Substitute 500 for x
[tex]Average = 0.02x + 50 - \frac{100}{x}[/tex]
[tex]Average = 0.02 * 500 + 50 - \frac{100}{500}[/tex]
[tex]Average = 59.8[/tex]
[tex]Marginal = 0.04x + 50[/tex]
[tex]Marginal = 0.04*500 + 50[/tex]
[tex]Marginal = 70[/tex]
Solving (d): Interpret the values in (c)
[tex]Average = 59.8[/tex]
They make a profit of 59.8 for the first 500 items
[tex]Marginal = 70[/tex]
From the 501st item, the profit is 70