1. En la granja del tío de Carlos se han acomodado 525 huevos en cartones pequeños y grandes a razón de 3 2 . Si en los cartones pequeños se acomodaron 15 huevos y en los grandes 30, ¿cuántos cartones pequeños y cuántos grandes se utilizaron? donde dice 3 tendria que ir como una fraccion 3 y abajo del 3 el 2

Respuesta :

Answer:

Small cartons used , x = 15

Large cartons used , y = 10

Step-by-step explanation:

Given - 1. On Carlos's uncle's farm, 525 eggs have been accommodated in small and large cartons at a rate of 3/2

            2. If 15 eggs were accommodated in the small cartons and 30 in the large cartons.

To find - How many small cartons and how many large cartons were used?

Solution -

Let

Small cartons used = x

Large cartons used = y

Now,

Given that,

Small and large cartons at a rate of 3/2

⇒[tex]\frac{x}{y} = \frac{3}{2}[/tex]

⇒x = [tex]\frac{3}{2} y[/tex]                      ............(1)

Now,

Given that,

Total eggs accommodated = 525

Also,

15 eggs were accommodated in the small cartons and 30 in the large cartons.

⇒15 x + 30 y = 525

Now,

put the value of x in the above equation, we get

15([tex]\frac{3}{2} y[/tex] ) + 30 y = 525

⇒[tex]\frac{45 + 60}{2} y = 525[/tex]

⇒[tex]\frac{105}{2} y = 525[/tex]

⇒y = [tex]525*\frac{2}{105}[/tex]

⇒y = 5(2) = 10

⇒y = 10

Now,

Put the value of y, we get

x =  [tex]\frac{3}{2} y[/tex]  = [tex]\frac{3}{2}(10)[/tex] = 3(5) = 15

∴ we get

x = 15

y = 10

So,

Small cartons used , x = 15

Large cartons used , y = 10