Respuesta :

Given:

The point on the terminal side of theta is (4,-7).

To find:

The exact values of sin theta, secant theta, and tangent theta.

Solution:

If a point [tex]P(x,y)[/tex] is on the terminal side of theta and [tex]r=\sqrt{x^2+y^2}[/tex], then

[tex]\sin \theta=\dfrac{y}{r}[/tex]

[tex]\cos \theta=\dfrac{x}{r}[/tex]

[tex]\sec \theta=\dfrac{r}{x}[/tex]

[tex]\tan \theta=\dfrac{y}{x}[/tex]

The point on the terminal side of theta is (4,-7). Here, [tex]x=4[/tex] and [tex]y=-7[/tex].

[tex]r=\sqrt{(4)^2+(-7)^2}[/tex]

[tex]r=\sqrt{16+49}[/tex]

[tex]r=\sqrt{65}[/tex]

Now,

[tex]\sin \theta=\dfrac{-7}{\sqrt{65}}[/tex]

[tex]\cos \theta=\dfrac{4}{\sqrt{65}}[/tex]

[tex]\sec \theta=\dfrac{\sqrt{65}}{4}[/tex]

[tex]\tan \theta=\dfrac{-7}{4}[/tex]

Therefore, [tex]\sin \theta=\dfrac{-7}{\sqrt{65}},\cos \theta=\dfrac{4}{\sqrt{65}},\sec \theta=\dfrac{\sqrt{65}}{4},\tan \theta=\dfrac{-7}{4}[/tex].