Respuesta :

Answer:

[tex]f(x) = \frac{3}{4}x +3[/tex]

Step-by-step explanation:

Given

[tex]f(x) = \frac{3}{4}x +3[/tex]

[tex]f(x) = \frac{4}{3}x-4[/tex]

Required

For which function is [tex]f(0) = 3[/tex] and [tex]f(-4) = 0[/tex] true

[tex]f(x) = \frac{3}{4}x +3[/tex]

Substitute 0 for x

[tex]f(0) = \frac{3}{4} * 0 + 3[/tex]

[tex]f(0) = 0 + 3[/tex]

[tex]f(0) = 3[/tex]

Substitute -4 for x

[tex]f(-4) = \frac{3}{4} * -4 + 3[/tex]

[tex]f(-4) = -3 + 3[/tex]

[tex]f(-4) = 0[/tex]

Hence:

[tex]f(x) = \frac{3}{4}x +3[/tex] is true for [tex]f(0) = 3[/tex] and [tex]f(-4) = 0[/tex]