Respuesta :
Answer:
[tex] \huge \boxed{\red{ \boxed{ - \cos(x) + C}}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
- integration
- PEMDAS
tips and formulas:
- [tex] \tan( \theta) = \dfrac{ \sin( \theta) }{ \cos( \theta) } [/tex]
- [tex] \sf \displaystyle \int \sin(x) \: dx = - \cos(x) + C[/tex]
let's solve:
- [tex] \sf \: rewrite \: \tan( \theta) \: as \: \dfrac{ \sin( \theta) }{ \cos( \theta) } : \\ = \displaystyle \int \: \frac{ \sin(x) }{ \cos(x) } \cos(x) \: dx \\ = \displaystyle \int \: \frac{ \sin(x) }{ \cancel{\cos(x) }} \: \cancel{ \cos(x)} \: dx \\ = \displaystyle \int \: \sin(x) \: dx[/tex]
- [tex] \sf \: use \: the \: formula : \\ \sf \displaystyle - \cos(x) [/tex]
- [tex] \sf add \: constant : \\ - \cos(x) + C[/tex]
[tex]\text{And we are done!}[/tex]
Answer:
-cosx+c is your answer
Step-by-step explanation:
[tex] \displaystyle \int \: \tan(x) \cos(x) \: dx[/tex]
[tex] \displaystyle \int \: \sin \: x \div \cos(x) \times \cos(x) dx [/tex]
[tex] \displaystyle \int \: sinx \: dx \\ - \cos(x) + c[/tex]