If 3x-y=12, what is the value of
[tex] \frac{8 ^{x} }{2^{y} } [/tex]
A) 2^12
B) 4^4
C) 8^2
D) The value cannot be determined for the information​

Respuesta :

Answer:

2¹² (Option A)

Step-by-step explanation:

__________________________________________________________

FACTS TO KNOW BEFORE SOLVING :-

  • Any number having 0 as its exponent , the overall result will be 1. For e.g. :- [tex]a^0 = 1[/tex] (where 'a' is any number).
  • Lets say there's a number 'a' having '- x' as its exponent , then - [tex]\frac{1}{a^{-x}} = a^x[/tex]

__________________________________________________________

Lets put random values in place of x.

Let x be 0.

Putting x = 0 in the eqn. 3x - y = 12 gives the value of y.

[tex]=> 3 \times 0 - y = 12[/tex]

[tex]=> -y = 12[/tex]

[tex]=> y = -12[/tex]

So, we can conclude that by putting x = 0 , we get y = -12.

Now , putting x = 0 & y = -12 in  [tex]\frac{8^x}{2^y}[/tex]  gives -

[tex]=> \frac{8^0}{2^{-12}} = \frac{1}{2^{-12}} = 2^{12}[/tex]