The top of a ladder slides down a vertical wall at a rate of 2 feet per second. At the moment when the bottom of the ladder is 4 feet from the wall, it slides away from the wall at a rate of 3 feet per second. How long is the ladder

Respuesta :

Answer:

The length of the ladder is 7.21 feet

Step-by-step explanation:

Let

y = Height of the wall

x = Distance between the wall and the ladder (bottom)

L = Length of the ladder

So, the given parameters are:

[tex]\frac{dy}{dt} = -2ft/s[/tex]

When [tex]x = 4; \frac{dx}{dt} = 3ft/s[/tex]

The ladder, the wall and the ground forms a right-angled triangle where the hypotenuse is the length of the ladder; So:

[tex]L^2 = x^2 + y^2[/tex]

Differentiate with respect to time

[tex]2L\frac{dL}{dt} = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}[/tex]

The length of the ladder does not change with time. So:

[tex]2L*0 = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}[/tex]

[tex]0 = 2x\frac{dx}{dt} + 2y\frac{dy}{dt}[/tex]

Rewrite as:

[tex]2x\frac{dx}{dt} =- 2y\frac{dy}{dt}[/tex]

Divide both sides by 2

[tex]x\frac{dx}{dt} =- y\frac{dy}{dt}[/tex]

Recall that:

[tex]\frac{dy}{dt} = -2ft/s[/tex] and  [tex]x = 4; \frac{dx}{dt} = 3ft/s[/tex]

So:

[tex]4 * 3 = -y * -2[/tex]

[tex]12 = 2y[/tex]

[tex]6 = y[/tex]

[tex]y = 6[/tex]

Substitute [tex]y = 6[/tex] and [tex]x =4[/tex] in: [tex]L^2 = x^2 + y^2[/tex]

[tex]L^2 =4^2 + 6^2[/tex]

[tex]L^2 =52[/tex]

[tex]L = \sqrt{52[/tex]

[tex]L = 7.21ft[/tex]