I will brainliest if correct! The graph of an exponential model in the form y=aXb^x passes through the points (3,5) and (4,10). Which point is also on the graph?(Multiple choice)

I will brainliest if correct The graph of an exponential model in the form yaXbx passes through the points 35 and 410 Which point is also on the graphMultiple c class=

Respuesta :

Answer:

The fourth choice.

Step-by-step explanation:

An exponential function passes through (3, 5) and (4, 10).

And we want to determine which other point is also on the graph.

First, we can find the exponential function. A standard exponential function is in the form:

[tex]y=a(b)^x[/tex]

The point (3, 5) tells us that y = 5 when x = 3. Thus:

[tex]5=a(b)^3[/tex]

The point (4, 10) tells us that y = 10 when x = 4. Thus:

[tex]10=a(b)^4[/tex]

In the first equation, we can divide both sides by a:

[tex]\displaystyle \frac{5}{a}=b^3[/tex]

And we can rewrite the second equation:

[tex]\displaystyle 2(5)=a(b^4)\Rightarrow 2\Big(\frac{5}{a}\Big)=b^4[/tex]

Substitute:

[tex]2b^3=b^4[/tex]

Divide:

[tex]b=2[/tex]

Using the first equation again, substitute:

[tex]5=a(2)^3[/tex]

Simplify and solve:

[tex]5=a(8)\Rightarrow \displaystyle a=\frac{5}{8}[/tex]

So, our exponential function is:

[tex]\displaystyle y=\frac{5}{8}(2)^x[/tex]

Next, we can simply try each point and see which point is correct.

Testing the first point (remember that (2,0) means that y = 0 when x = 2):

[tex]\displaystyle 0\stackrel{?}{=}\frac{5}{8}(2)^0=\frac{5}{8}(1)=\frac{5}{8}\neq 0[/tex]

Testing the second point:

[tex]\displaystyle 1\stackrel{?}{=}\frac{5}{8}(2)^2=\frac{5}{8}(4)=\frac{5}{2}\neq 1[/tex]

The third point:

[tex]\displaystyle 15\stackrel{?}{=}\frac{5}{8}(2)^5=\frac{5}{8}(32)=5(4)=20\neq 15[/tex]

And the fourth point:

[tex]\displaystyle 20\stackrel{?}{=}\frac{5}{8}(2)^5=\frac{5}{8}(32)=5(4)=20\stackrel{\checkmark}{=}20[/tex]

Therefore, D is the correct choice.

Answer:

(2,0)

Step-by-step explanation:

The answer is (2,0) because the number line passes through that point

Ver imagen brookmendes