Respuesta :

Answer:

Blue

Step-by-step explanation:

Given

[tex]Red = 10[/tex]

[tex]Blue = 10[/tex]

[tex]Green = 10[/tex]

[tex]Yellow = 10[/tex]

[tex]Total = 10 + 10 + 10 + 10 = 40[/tex]

[tex]trials = 7[/tex]

See attachment for complete question

From the attached figure;

The observed frequency of each is:

[tex]Red = 1[/tex]

[tex]Blue = 2[/tex]

[tex]Green = 0[/tex]

[tex]Yellow = 4[/tex]

Next is to calculate the probability of each of the colors.

[tex]P(Red) = \frac{Red}{Total} = \frac{10}{10 + 10 +10 +10} =\frac{10}{40} = \frac{1}{4}[/tex]

[tex]P(Blue) = \frac{Blue}{Total} = \frac{10}{10 + 10 +10 +10} =\frac{10}{40} = \frac{1}{4}[/tex]

[tex]P(Green) = \frac{Green}{Total} = \frac{10}{10 + 10 +10 +10} =\frac{10}{40} = \frac{1}{4}[/tex]

[tex]P(Yellow) = \frac{Yellow}{Total} = \frac{10}{10 + 10 +10 +10} =\frac{10}{40} = \frac{1}{4}[/tex]

The expected frequency of each is:

[tex]Expected = Probability * trials[/tex]

So:

[tex]Red = \frac{1}{4} * 7 = 1.75[/tex]

[tex]Blue = \frac{1}{4} * 7 = 1.75[/tex]

[tex]Green= \frac{1}{4} * 7 = 1.75[/tex]

[tex]Yellow= \frac{1}{4} * 7 = 1.75[/tex]

By comparison the expected frequencies with the observed frequencies;

The closest is Blue.

Observed frequency          Expected         Absolute difference

[tex]Red = 1[/tex]                                    [tex]1.75[/tex]                  [tex]|1-1.75| = 0.75[/tex]

[tex]Blue = 2[/tex]                                  [tex]1.75[/tex]                  [tex]|2-1.75| = 0.25[/tex]

[tex]Green = 0[/tex]                               [tex]1.75[/tex]                   [tex]|0-1.75| = 1.75[/tex]

[tex]Yellow = 4[/tex]                               [tex]1.75[/tex]                  [tex]|4-1.75| = 1225[/tex]

This is so because; blue has the least absolute difference.

Ver imagen MrRoyal

Answer:

blue

Step-by-step explanation: