Respuesta :

Nayefx

Answer:

[tex]\huge \colorbox{blue}{B}[/tex]

Step-by-step explanation:

to understand this

you need to know about:

  • equation
  • PEMDAS

let's solve:

we are given the formula,Mass and volume

to find density we just need to substitute the value of mass and value and simplify it

[tex] \sf substitute \: the \: value \: of \: mass \: and \: volume : [/tex]

[tex] \quad \: \sf \dfrac{7.0 \times {10}^{24} \: kg }{3.5 \times {10}^{12} \: {km}^{3} } [/tex]

now we will use [tex]\dfrac{x^m}{x^n}=x^{m-n}[/tex] to simplify division

[tex] \sf simplify \: division : \\ \quad \: \sf 2 \times {10}^{24 - 12} \times \frac{kg}{ {km}^{3} } \\ \quad \tt 2 \times {10}^{12} \frac{kg}{ {km}^{3} } [/tex]

hence, our choice is [tex]B[/tex]

___________________________________

[tex]\huge\underline{\tt{\red{Formula:}}}[/tex]

[tex]\quad\quad\quad\quad\tt{density = \frac{mass}{volume} }[/tex]

[tex]\huge\underline{\tt{\red{Solution:}}}[/tex]

[tex]\quad\quad\quad\quad\tt{density = \frac{7.0 \times {10}^{24} \: kg}{3.5 \times {10}^{12} \: k {m}^{3} } }[/tex]

[tex]\quad\quad\quad\quad\tt{density = (\frac{7.0}{3.5 } = 2.0)}[/tex]

[tex]\quad\quad\quad\quad\tt{\:\:and\:\:({10}^{24 -12})}[/tex]

[tex]\quad\quad\quad\quad \boxed{\tt{density = 2.0 \times {10}^{12} \: \frac{kg}{k {m}^{3} }} }[/tex]

[tex]\huge\underline{\tt{\red{Answer:}}}[/tex]

[tex]\quad\quad \underline{\boxed{\tt{ \red{B.) \: \: 2.0 \times {10}^{12} \: \frac{kg}{k {m}^{3} }}}} }[/tex]

[tex]\huge\underline{\tt{\red{Explanation:}}}[/tex]

Given that the formula for density is equal to mass all over the volume.

We use this formula:

[tex]\boxed{\tt{density = \frac{mass}{volume} }}[/tex].

We substitute it like this:

[tex]\boxed{\tt{density = \frac{7.0 \times {10}^{24} \: kg}{3.5 \times {10}^{12} \: k {m}^{3} } }}[/tex]

Then, hence we got:

[tex]\boxed{\tt{density = 2.0 \times {10}^{12} \: \frac{kg}{k {m}^{3} }} }[/tex]

___________________________________

#CarryOnLearning

✍︎ C.Rose❀

Ver imagen Аноним