Respuesta :
Answer:
E(X) = 38.9346
Var(X) = 25.588
E(Y) = 38.25
Var(Y) = 26.1875
Step-by-step explanation:
Given - Four buses carrying 153 high school students arrive to Montreal. The buses carry, respectively, 36, 46, 32, and 39 students. One of the students is randomly selected.One of the 4 bus drivers is also randomly selected.
To find - Compute the expectations and variances of X and Y.
Proof -
Let us assume that,
X be The number of students that were on the bus carrying this randomly selected student.
Y denote the number of students on his bus.
Now,
E(X) = [tex]\frac{36(36) + 46(46) + 32(32) + 39(39)}{153}[/tex]
= [tex]\frac{5957}{153}[/tex]
= 38.9346
⇒E(X) = 38.9346
Now,
E(Y) = [tex]\frac{36 + 46 + 32 + 39}{4}[/tex]
= [tex]\frac{153}{4}[/tex]
= 38.25
⇒E(Y) = 38.25
Now,
Var(X) = [tex]\frac{36(36 - 38.9346)^{2} + 46(46 - 38.9346)^{2} + 32(32 - 38.9346)^{2} + 39(39 - 38.9346)^{2}}{153}[/tex]
= [tex]\frac{310.0276 + 2296.3144 + 1308.5091 + 0.1668}{153}[/tex]
= [tex]\frac{3915.0179}{153}[/tex]
= 25.588
⇒Var(X) = 25.588
Now,
Var(Y) = E(Y²) - [E(Y)]²
= [tex]\frac{36^{2} + 46^{2} + 32^{2} + 39^{2} }{4} - (38.25)^{2}[/tex]
= [tex]\frac{5957}{4} - 1463.0625[/tex]
= 1489.25 - 1463.0625
= 26.1875
⇒Var(Y) = 26.1875