Respuesta :

Answer:

[tex]5x-4y+4=0[/tex]

Step-by-step explanation:

Given: A point  which is perpendicular to the line .

To find: The equation of the line which passes through [tex](-4, -4)[/tex] and is perpendicular to the line [tex]4x+5y=5[/tex].

Solution:

We have, [tex]4x+5y=5[/tex].

Slope of the line [tex]4x+5y=5[/tex] is [tex]-\frac{4}{5}[/tex].

The line which passes through [tex](-4, -4)[/tex] is perpendicular to the line [tex]4x+5y=5[/tex].

Now, the product of the slopes of two perpendicular lines is [tex]-1[/tex].

Therefore, [tex]m\times-\frac{4}{5}=-1[/tex]

So, its slope is [tex]\frac{5}{4}[/tex].

Now, the equation of the line which passes through [tex](-4, -4)[/tex] and slope [tex]\frac{5}{4}[/tex] is:

[tex]y-(-4)=\frac{5}{4} [x-(-4)][/tex]

[tex]\Rightarrow y+4=\frac{5}{4} (x+4)[/tex]

[tex]\Rightarrow 4(y+4)=5(x+4)[/tex]

[tex]\Rightarrow 4y+16=5x+20[/tex]

[tex]\Rightarrow 5x-4y+20-16=0[/tex]

[tex]\Rightarrow 5x-4y+4=0[/tex]

Hence, the equation of the line that contains the point [tex](-4, -4)[/tex] and is perpendicular to the line [tex]4x+5y=5[/tex] is [tex]5x-4y+4=0[/tex].