A rectangular storage container without a lid is to have a volume of 10 m3. The length of its base is twice the width. Material for the base costs $15 per square meter. Material for the sides costs $9 per square meter. Find the cost (in dollars) of materials for the least expensive such container. (Round your answer to the nearest cent.)

Respuesta :

Answer:

The least expensive cost = $245.32

Step-by-step explanation:

From the information:

Volume of the rectangular container = 10 m²

Assume the width of the container is = w

The base = 2 × width

= 2(w)

Volume = height × base × width

10 = h × 2w × w

[tex]h = \dfrac{10}{2w^2}[/tex]

[tex]h = \dfrac{5}{w^2}[/tex]

Now, to calculate the area of the base; we have:

[tex]Area = length \times width[/tex]

[tex]Area = 2w \times w[/tex]

[tex]Area = (2w^2) \ m^2[/tex]

[tex]Cost \ of \ base = 15 * 2w^2[/tex]

Cost of base = [tex]30w^2[/tex] --- (1)

[tex]Area \ of \ side = 2 ( height \times length ) + 2( height \times width) \\ \\ = 2 (h \times 2w) + 2(h\times w) \\ \\ = 4hw + 2hw \\ \\ = 6 hw \\ \\ = 6 \times \dfrac{5}{w^2} \times w \\ \\ Area = \dfrac{30 }{w} \ m^2[/tex]

Let's not forget that the cost of the sides = $9 per m²

Thus; the cost of the sides will be [tex]= \$ 9 \times \dfrac{30}{w}[/tex]

the cost of the sides [tex]= \dfrac{\$270}{w}[/tex]

Thus the total cost = cost of base = cost of sides

[tex]C(w) = 30w^2 + \dfrac{270}{w}[/tex]

By differentiation;

[tex]C'(w) = \dfrac{dC}{dw} \\ \\ = 30 \times 2w + 270 ( \dfrac{-1}{w^2}) \\ \\ C'(w) = 60 w - \dfrac{270 }{w^2} \\ \\[/tex]

[tex]\text{To determine the minimum cost:} \\ \\ C'(w) = 0 \\ \\ So, 60 w - \dfrac{270}{w^2}= 0 \\ \\ \text{By integrating w.r.t w} \\ \\ w ( 60 - \dfrac{270}{w^3}) =0 \\ \\ \implies 60 - \dfrac{270}{w^3} \\ \\ w^3 = \dfrac{270}{60} \\ \\ w^3 = \dfrac{9}{2} \\ \\ w = (\dfrac{9}{2})^{1/3} \\ \\ w = 1.6509 \ m[/tex]

From; [tex]C(w) = 30w^2 + \dfrac{270}{w}[/tex]

[tex]Cos t = \dfrac{30 w^3+ 270}{w} \\ \\ =\dfrac{30 (\dfrac{9}{2})+ 270}{1.6509} \\ \\ = \dfrac{135+270}{1.6509} \\ \\ = \dfrac{405}{1.6509} \\ \\ \mathbf{Cost = \$245.32}[/tex]