Respuesta :
The function will be
[tex]f(x) = 9 - x + \sqrt[2]{ {x}^{2} + 9} [/tex]
and minimum value required will be
[tex]9 + \sqrt[3]{3} [/tex]
How to solve this problem?
The steps are as follow:
[tex]f(x) = (9 - x) + \sqrt[2]{ (x^2 + 3^2) } \\ =(9 - x) + \sqrt[2]{ (x^2 +9)} \\ f(x) = \frac{2x}{ \sqrt{ {x}^{2} + 9} } - 1 \\ f(x) = 0 \\ \frac{2x}{ \sqrt{ {x}^{2} + 9} } - 1 = 0 \\ \frac{2x}{ \sqrt{ {x}^{2} + 9}} = 1 \\ 2x = \sqrt{ {x}^{2} + 9} \\ 4{x}^{2} = { x}^{2} + 9 \\ 3 {x}^{2} = 9 \\ {x} = \sqrt{3} [/tex]
so putting value of in f(x) we will get
[tex]f( \sqrt{3} ) = 9 - \sqrt{3} + \sqrt[2]{ { (\sqrt{3} )}^{2} + 9} \\ = 9 + 2 \sqrt{3} [/tex]
So The function will be
[tex]f(x) = 9 + \sqrt[2]{ {x}^{2} + 9}[/tex]
and minimum value required will be
[tex]9 + \sqrt[3]{3} [/tex]
Learn more about functions here:
https://brainly.com/question/2833285
#SPJ2