The geometric sequence a_ia i ​ a, start subscript, i, end subscript is defined by the formula: a_1 = -\dfrac13a 1 ​ =− 3 1 ​ a, start subscript, 1, end subscript, equals, minus, start fraction, 1, divided by, 3, end fraction a_i = a_{i - 1} \cdot (-3)a i ​ =a i−1 ​ ⋅(−3)a, start subscript, i, end subscript, equals, a, start subscript, i, minus, 1, end subscript, dot, left parenthesis, minus, 3, right parenthesis Find the sum of the first 757575 terms in the sequence.

Respuesta :

The sum of the first 75 terms of the sequence is -5.068*10^34

Given the following geometric sequence

[tex]a_1 = \frac{-1}{3} \\a_i = a_{i-1}*(-3)[/tex]

The sum of the nth term of the GP is expressed as;

[tex]S_n = \frac{a(1-r^n)}{1-r}[/tex]

a = -1/3

n = 75

r = a₂/a₁

a₂ = -3a₁

a₂ = -3(-1/3)

a2 = 1

r = 1/(-1/3)

r = -3

Substitute the given values in the formula;

[tex]S_n = \frac{-1/3(1-3^{75})}{1-(-3)}\\S_{75} = \frac{-1/3(3^{75}-1)}{1+3} \\S_{75} = \frac{-1/3(6.082 \times 10^{35}-1)}{4}\\S_{75} = \frac{-1/3(6.082 \times 10^{35})}{4}\\S_{75} = -0.5068 \times 10^{35}\\S_{75} = -5.068 \times 10^{34}\\[/tex]

Hence the sum of the first 75 terms is -5.068*10^34

Learn more on geometric series here: https://brainly.com/question/20548958