Respuesta :

Answer:

No solution

Step-by-step explanation:

For the equation given, we have an alternate form that is

[tex]\dfrac{y^2 + 16}{y^2-16} =\dfrac{32}{y^2-16}[/tex]

It is clear that

[tex]y^2+16 = 32 \implies y=4, y=-4[/tex]

But the denominator goes to zero and it is undefined.

If you take

[tex]$\lim _{y\to 4}\left(\dfrac{y^2+16}{y^2-16}\right)$[/tex]

you'll see that

[tex]$\lim _{y\to 4^-}\left(\dfrac{y^2+16}{y^2-16}\right) = -\infty$[/tex]

[tex]$\lim _{y\to 4^+}\left(\dfrac{y^2+16}{y^2-16}\right) =\infty$[/tex]

It diverges and the limit does not exist.