Respuesta :
Answer:
(a) See attachment for table
(b) [tex]Atmost\ 6 = 21.667\%[/tex]
(c) [tex]Less\ than\ 6 = 21.667\%[/tex]
(d) [tex]At\ least\ 6 = 78.333\%[/tex]
Step-by-step explanation:
Given
The data (in the question)
Solving (a): Frequency and Relative frequencies of each data
The range of the data is 0 to 8. So the frequency of each is the number of times each of 0 - 8 occurs.
This is tabulated below:
[tex]\begin{array}{ccc}x & {Frequency} & {Relative\ Frequency} & {0} & {7} & {11.667\%} &{1}& {13} & {21.667\%} & {2} & {13} & {21.667\%} & {3} & {14} &{23.333\%} & {4} & {5} & {8.333\%} & {5} &{3} &{5.000\%} &{6} &{2} & {3.333\%} & {7} & {2} & {3.333\%} & {8} & {1} & {1.667\%} \ \end{array}[/tex]
[tex]Total\ \ \ 60[/tex]
The relative frequency is calculated as:
[tex]Relative\ Frequency = \frac{Frequency}{Total\ Frequency} * 100\%[/tex]
For instance: When x = 0:
[tex]Relative\ Frequency = \frac{7}{60} * 100\%[/tex]
[tex]Relative\ Frequency = \frac{700}{60} * \%[/tex]
[tex]Relative\ Frequency = 11.667 \%[/tex]
Solving (b): Proportion that have at most 6.
Here, we consider frequencies of 0 to 6.
This is represented as thus:
[tex]\begin{array}{ccc}x & {Frequency} & {Relative\ Frequency} & {4} & {5} & {8.333\%} & {5} &{3} &{5.000\%} &{6} &{2} & {3.333\%} & {7} & {2} & {3.333\%} & {8} & {1} & {1.667\%} \ \end{array}[/tex]
Add up the relative frequencies to get the proportion
[tex]Atmost\ 6 = 8.333\% + 5.000\% + 3.333\% + 3.333\% + 1.667\%[/tex]
[tex]Atmost\ 6 = 21.667\%[/tex]
Solving (c): Proportion that have at fewer than 6.
Here, we consider frequencies of 0 to 5.
This is represented as thus:
[tex]\begin{array}{ccc}x & {Frequency} & {Relative\ Frequency} & {4} & {5} & {8.333\%} & {5} &{3} &{5.000\%} &{6} &{2} & {3.333\%} & {7} & {2} & {3.333\%} & {8} & {1} & {1.667\%} \ \end{array}[/tex]
Add up the relative frequencies to get the proportion
[tex]Less\ than\ 6 = 8.333\% + 5.000\% + 3.333\% + 3.333\% + 1.667\%[/tex]
[tex]Less\ than\ 6 = 21.667\%[/tex]
Solving (d): Proportion that have at least 6.
Here, we make use of the complement rule:
[tex]At\ least\ 6 = 100\% - Less\ than\ 6[/tex]
[tex]At\ least\ 6 = 100\% - 21.667\%[/tex]
[tex]At\ least\ 6 = 78.333\%[/tex]