Respuesta :

Complete Question:

Find the coordinates of the point after the described reflection. Give the distance between the point and its reflection. R(-5, 8) is reflected across the x-axis _____________.

Answer:

[tex](a)[/tex] [tex]R' = (-5,-8)[/tex]

[tex](b)[/tex] The distance is 16 units

Step-by-step explanation:

Given

[tex]R = (-5,8)[/tex]

Solving (a): Reflection across x-axis

The rule is:

[tex]R(x,y) ==> R(x,-y)[/tex]

So, the reflection of [tex]R = (-5,8)[/tex] is:

[tex]R' = (-5,-8)[/tex]

Solving (b): The distance between R and R'

Distance (d) is calculated as:

[tex]d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}[/tex]

Where:

[tex]R = (-5,8)[/tex] ---- [tex](x_1,y_1)[/tex]

[tex]R' = (-5,-8)[/tex] --- [tex](x_2,y_2)[/tex]

This gives:

[tex]d = \sqrt{(-5- -5)^2 + (-8- 8)^2}[/tex]

[tex]d = \sqrt{(0)^2 + (-16)^2}[/tex]

[tex]d = \sqrt{256}[/tex]

[tex]d = 16[/tex]

The distance is 16 units