Respuesta :

[tex]\frac{d}{dx}(y^2 + (xy+1)^3 = 0) \\ \\\frac{d}{dx}y^2 + \frac{d}{dx}(xy+1)^3 = \frac{d}{dx}0 \\ \\\frac{dy}{dx}2y + \frac{d}{dx}(xy+1)\ *3(xy+1)^2 = 0 \\ \\\frac{dy}{dx}2y + \left(\frac{d}{dx}(xy)+\frac{d}{dx}1\right)\ * 3(xy+1)^2 = 0 \\ \\\frac{dy}{dx}2y + \left(\frac{d}{dx}xy+x\frac{d}{dx}y+\frac{dx}{dx}\right)\ * 3(xy+1)^2 = 0 \\ \\\frac{dy}{dx}2y + \left(\frac{dx}{dx}y+x\frac{dy}{dx}+\frac{dx}{dx}0\right)\ * 3(xy+1)^2 = 0 \\ \\\frac{dy}{dx}2y + \left(y+x\frac{dy}{dx}\right)\ * 3(xy+1)^2 = 0[/tex]
[tex]\frac{dy}{dx}2y + \left(y+x\frac{dy}{dx}\right)\ * 3(xy+1)^2 = 0 \\ \\\frac{dy}{dx}2y + \left(3y+3x\frac{dy}{dx}\right) (xy+1)^2 = 0 \\ \\2y\ y' + \left(3y+3x\ y'\right) (xy+1)^2 = 0 \\ \\2y\ y' + \left(3y+3x\ y'\right) ((xy)^2+2xy+1) = 0 \\ \\2y\ y' + \left(3y+3x\ y'\right) ((xy)^2+2xy+1) = 0 \\ \\2y\ y' + 3x^2y^3 +6xy^2+3y+(3x y' +6x^2y y'+3x^2y y') = 0 \\ \\3x^2y^3 +6xy^2+3y+(3x y' +6x^2y y'+3x^2y y'+2yy' ) = 0 \\ \\y'(3x +6x^2y+3x^2y+2y ) = -3x^2y^3 -6xy^2-3y [/tex]
[tex]y' = \frac{-3x^2y^3 -6xy^2-3y}{(3x +6x^2y+3x^2y+2y )};\ x=2,y=-1 \\ \\y' = \frac{-3(2)^2(-1)^3 -6(2)(-1)^2-3(-1)}{(3(2) +6(2)^2(-1)+3(2)^2(-1)+2(-1) )} \\ \\y' = \frac{-3(4)(-1) -6(2)(1)+3}{(6 +6(4)(-1)+3(4)(-1)-2 )} \\ \\y' = \frac{12 -12+3}{(6 -24-12-2 )} \\ \\y' = \frac{3}{( -32 )}[/tex]