Respuesta :
x − y + 2z = 1
3x + y + 5z = 19
2x − y − 2z = −17
-3x+3y-6z=-3
3x + y + 5z = 19
4y-z=16 (1)
-2x+2y-4z=-2
2x − y − 2z = −17
y-6z=-19 (2)
4y-z=16 (1)
y-6z=-19 (2)
4y-z=16
-4y+24z=76
23z=92
z=4
y-6z=-19
y-6×4=-19
y-24=-19
y=24-19
y=5
x − y + 2z = 1
x-5+2×4=1
x-5+8=1
x+3=1
x=-2
(x,y,z)=(-2,5,4)
3x + y + 5z = 19
2x − y − 2z = −17
-3x+3y-6z=-3
3x + y + 5z = 19
4y-z=16 (1)
-2x+2y-4z=-2
2x − y − 2z = −17
y-6z=-19 (2)
4y-z=16 (1)
y-6z=-19 (2)
4y-z=16
-4y+24z=76
23z=92
z=4
y-6z=-19
y-6×4=-19
y-24=-19
y=24-19
y=5
x − y + 2z = 1
x-5+2×4=1
x-5+8=1
x+3=1
x=-2
(x,y,z)=(-2,5,4)
Answer:
The solution of equation is :(-2,5,4)
Step-by-step explanation:
x - y + 2z = 1
..[1]
3x + y + 5z = 19 ..[2]
2x - y - 2z = -17 ...[3]
Putting value of y from [1] in [2]and [3]
y = x+ 2z -1
3x + (x+ 2z -1) + 5z = 19
4x + 7z = 20 ...[4]
2x - (x+ 2z -1) - 2z = -17
x - 4z = -18 ...[5]
Solving equation [4] and [5] by substitution:
Putting values of x from [5] in [4]
x = 4z -18
4(4z -18) + 7z = 20 ...[4]
16z - 72+ 7z =20
23z = 92
z = 4
x = [tex]4\times \frac{92}{23}-18=-2[/tex]
[tex]y = (-2)+ 2\frac{92}{23} -1=5[/tex]
(x,y,z)= (5.-2,4)
The solution of equation is :(-2,5,4)