Answer:
Option A is correct.
AA similarity postulate justifies that [tex]\triangle HEF \sim \triangle HGE[/tex]
Step-by-step explanation:
The sum of the measures of a angles in a triangle add up to 180 degree.
In the triangle HGE:
[tex]\angle EHG+\angle EGH+\angle GEH = 180^{\circ}[/tex]
Substitute the given values;
[tex]90^{\circ}+37^{\circ}+\angle GEH = 180^{\circ}[/tex]
[tex]127^{\circ}+\angle GEH = 180^{\circ}[/tex]
Simplify:
[tex]\angle GEH = 180 -127 = 53^{\circ}[/tex]
In triangle HEF and triangle HGE
[tex]\angle FHE = \angle GHE = 90^{\circ}[/tex] [Angle]
[tex]\angle EFH = \angle GEH = 53^{\circ}[/tex] [Angle]
AA (Angle-Angle) similarity postulates states that two triangle are similar if they have two corresponding angles that are congruent or equal.
by AA similarity postulates;
[tex]\triangle HEF \sim \triangle HGE[/tex]