Find the length of arc XPY.

Answer:
Arc length XPY =28.26 m.
Step-by-step explanation:
Given : A circle with two arc XY and XPY and radius 6 m.
To find : Arc length XPY.
Solution : We have given that arc XY and XPY .
Radius = 6 m.
Central angle formed by arc XPY = 360 - 90 = 270.
Arc length = 2 *pi* r ( [tex]\frac{central\ angle}{360}[/tex].
Plugging the values
Arc length = 2 *3.14 * 6 ( [tex]\frac{270}{360}[/tex].
Arc length =37.68 ( [tex]\frac{3}{4}[/tex].
Arc length =37.68 * 0.75
Arc length XPY =28.26 m.
Therefore, Arc length XPY =28.26 m.
Answer:
The length of arc XPY=28.26 m
Step-by-step explanation:
We are given that a circle in which
Radius=6 m
Central angle made by arc XPY=[tex]360-90=270^{\circ}[/tex]
We have to find the length of arc XPY.
We know that
Arc length formula:[tex]\frac{central\;angle}{360^{\circ}}\times 2\pi r[/tex]
Substitute the value in the formula then we get
Length of arc XPY=[tex]\frac{270}{360}\times 2\times 3.14 \times 6=28.26 m[/tex] ([tex]\pi=3.14[/tex])
Hence, the length of arc XPY=28.26 m