The momentum of a system before a collision is 2.4 × 103 kilogram meters/second in the x-direction and 3.5 × 103 kilogram meters/second in the y-direction. What is the magnitude of the resultant momentum after the collision if the collision is inelastic?
A. 1.7 × 103 kilogram meters/second
B. 2.1 × 103 kilogram meters/second
C. 3.4 × 103 kilogram meters/second
D. 4.2 × 103 kilogram meters/second
E. 5.7 × 103 kilogram meters/second ...?

Respuesta :

 If inelastic, then the total amount of system momentum before the collision (and after) can be determined by using the Pythagorean theorem. It is expressed as:

c^2 = a^2 + b^2
c^2 = (2.4x10^3)^2 + (3.5x10^3)^2
c = 4.2 x10^3  
kilogram meters/second -------> OPTION C

Answer:

Option D - [tex]4.2\times 10^3[/tex] kilogram meters/second.

Step-by-step explanation:

Given : The momentum of a system before a collision is [tex]2.4 \times 10^3[/tex] kilogram meters/second in the x-direction and [tex]3.5 \times 10^3[/tex] kilogram meters/second in the y-direction.    

To find : What is the magnitude of the resultant momentum after the collision if the collision is inelastic?

Solution :

In inelastic,

The magnitude of the resultant momentum after the collision (and before) can be determined by using the Pythagorean theorem.

[tex]c^2 = a^2 + b^2[/tex]

Where, a is the momentum before collision  [tex]a=2.4 \times 10^3[/tex]

b is the momentum after collision  [tex]b=3.5 \times 10^3[/tex]

c is the total amount of momentum before and after collision.

Substitute the value,

[tex]c^2 = (2.4\times10^3)^2 + (3.5\times10^3)^2[/tex]

[tex]c^2 =5760000+ 12250000[/tex]

[tex]c=\sqrt{18010000}[/tex]

[tex]c=4243.819[/tex]

[tex]c=4.2\times 10^3[/tex] kg m/s

Therefore, Option D is correct.

The magnitude of the resultant momentum after the collision if the collision is inelastic is [tex]4.2\times 10^3[/tex] kilogram meters/second.