A firecracker shoots up from a hill 160 feet high with an initial speed of 90 feet per second. Using the formula H(t) = −16t2 + vt + s, approximately how long will it take the firecracker to hit the ground? ...?

Respuesta :

When the firecracker hits the ground, H(t) = 0.0 = -16t^2 + 90t + 160Using the quadratic formula,t = (-90 +- sqrt(90^2 - 4(-16)(160))) / 2(-16)t = -1.42 ort = 7.04
The negative time is extraneous. Therefore,t = 7.04 s.

Answer : t = 7.044 sec

Explanation :

It is given that,

Velocity, [tex]v=90\ feet/sec[/tex]

distance, [tex]s=160\ m[/tex]

[tex]H(t)=-16\ t^2+ vt+ s[/tex]

When firecracker hits the ground hen H(t) = 0

So, [tex]-16 t^2+90\ t+160=0[/tex]

or

[tex]8 t^2-45\ t-80=0[/tex]

Solving this quadratic equation, we get

[tex]t=\dfrac{-(-45) \pm \sqrt{(-45)^2-4(8)(-80)} }{2(8)}[/tex]

[tex]t=\dfrac{45\ \pm\sqrt{4585} }{16}[/tex]

[tex]t=7.044\ sec[/tex]

Neglecting negative values as time can't be negative.

Firecracker will take 7.044 sec to hit the ground.