Respuesta :

By pyythagarous theorem
(√72)²=6²+s²
72=36+s²
s²=72-36
s²=36
s=6

Answer:

Option E is correct

value of s is, 6 units

Step-by-step explanation:

Using Pythagoras theorem in right angle triangle:

[tex]\text{Hypotenuse side}^2=\text{Opposite side}^2+\text{Adjacent side}^2[/tex]

As per the statement:

In a given right angle triangle:

Hypotenuse side = [tex]\sqrt{72}[/tex] units

opposite side = 6 units

Adjacent side = s units

Solve for s;

Apply the Pythagoras theorem to the given triangle we have;

[tex](\sqrt{72})^2 = 6^2+s^2[/tex]

⇒[tex]72=36+s^2[/tex]

Subtract 36 from both sides we have;

[tex]36 = s^2[/tex]

or

[tex]s^2 = 36[/tex]

Since, side cannot be in negative

⇒[tex]s = \sqrt{36} = 6[/tex] units

Therefore, the value of s is, 6 units