Respuesta :

For this case we have the following expression:
 [tex](8xy^2 - 14y^2)/2y [/tex]
 Rewriting the expression we have:
 [tex](4xy ^ 2 - 7y ^ 2) / y [/tex]
 Then, for power properties we have:
 [tex](4xy ^ {(2-1)} - 7y ^ {(2-1)}) [/tex]
 Rewriting the expression we have:
 [tex](4xy ^ {(1)} - 7y ^ {(1)}) [/tex]
 [tex]4xy - 7y [/tex]
 Answer:
 The equivalent expression is given by:
 4xy - 7y

Answer:

[tex]y(4x-7)[/tex]  

Step-by-step explanation:

We have been given an expression [tex]8xy^2-14y^2[/tex] and we are asked to divide our given expression by [tex]2y[/tex].

Upon writing our given problem as a division problem we will get,

[tex]\frac{8xy^2-14y^2}{2y}[/tex]

Upon factoring out the greatest factor of the terms from numerator we will get,

[tex]\frac{2y^2(4x-7)}{2y}[/tex]  

[tex]y(4x-7)[/tex]  

[tex]y(4x-7)[/tex]    

Therefore, the quotient of our given problem is [tex]y(4x-7)[/tex].