Respuesta :
For this case we have the following expression:
[tex](8xy^2 - 14y^2)/2y [/tex]
Rewriting the expression we have:
[tex](4xy ^ 2 - 7y ^ 2) / y [/tex]
Then, for power properties we have:
[tex](4xy ^ {(2-1)} - 7y ^ {(2-1)}) [/tex]
Rewriting the expression we have:
[tex](4xy ^ {(1)} - 7y ^ {(1)}) [/tex]
[tex]4xy - 7y [/tex]
Answer:
The equivalent expression is given by:
4xy - 7y
[tex](8xy^2 - 14y^2)/2y [/tex]
Rewriting the expression we have:
[tex](4xy ^ 2 - 7y ^ 2) / y [/tex]
Then, for power properties we have:
[tex](4xy ^ {(2-1)} - 7y ^ {(2-1)}) [/tex]
Rewriting the expression we have:
[tex](4xy ^ {(1)} - 7y ^ {(1)}) [/tex]
[tex]4xy - 7y [/tex]
Answer:
The equivalent expression is given by:
4xy - 7y
Answer:
[tex]y(4x-7)[/tex]
Step-by-step explanation:
We have been given an expression [tex]8xy^2-14y^2[/tex] and we are asked to divide our given expression by [tex]2y[/tex].
Upon writing our given problem as a division problem we will get,
[tex]\frac{8xy^2-14y^2}{2y}[/tex]
Upon factoring out the greatest factor of the terms from numerator we will get,
[tex]\frac{2y^2(4x-7)}{2y}[/tex]
[tex]y(4x-7)[/tex]
[tex]y(4x-7)[/tex]
Therefore, the quotient of our given problem is [tex]y(4x-7)[/tex].