Respuesta :
Use cosine law to solve for x
[tex]x^2=60.5^2+186^2-2\times60.5\times186\times \cos{40^o}
\\x^2=38,256.25-17,240.6
\\x^2=21,015.65
\\x= \sqrt{21,015.65}
\\x=145[/tex]

Answer:
The outfielder threw the ball 145 feet away.
Step-by-step explanation:
We are given that,
Distance of mound from home plate = 60.5 feet
Distance of outfielder from home plate = 186 feet
Angle made by the batter = 40°
So, using the cosine law, we have,
[tex]c^{2}=a^{2}+b^{2}-2ab\cos \theta[/tex]
i.e. [tex]c^{2}=(60.5)^{2}+(186)^{2}-2\times 60.5\times 186\times \cos 40[/tex]
i.e. [tex]c^{2}=38256.25 -22506\times 0.766[/tex]
i.e. [tex]c^{2}=38256.25 -17239.596 [/tex]
i.e. [tex]c^{2}=21016.654 [/tex]
i.e. c = ±144.97 ≈ ±145
Since, the distance cannot be negative.
Thus, the outfielder threw the ball 145 feet away.
