Respuesta :

[tex]x^{ \frac{m}{n} }= \sqrt[n]{x^m} [/tex]

remember pemdas
[tex]3x^{ \frac{5}{7}} [/tex]
expoennts before multiply, so move 3 to side
3([tex]x^{ \frac{5}{7}} [/tex])
convert
3([tex] \sqrt[7]{x^5} [/tex])
[tex] 3\sqrt[7]{x^5} [/tex]
The answer is 3 seventh root of x to the fifth power.

3 x to the 5 sevenths power is [tex] 3x^{ \frac{5}{7} } [/tex]
Since [tex]x ^{ \frac{a}{b} } = \sqrt[b]{ x^{a} } [/tex], then [tex]x^{ \frac{5}{7} } = \sqrt[7]{ x^{5} } [/tex]

Therefore:
[tex]3x^{ \frac{5}{7} } =3 \sqrt[7]{ x^{5} } [/tex]

[tex]3 \sqrt[7]{ x^{5} } [/tex] is  3 seventh root of x to the fifth power.