Find the perimeter of triangle CDE. Round to the nearest tenth.
(1 point)
90.0
18.0
14.3
10.5

Answer: 18.0
Step-by-step explanation:
The distance formula to find the distance between two points P(a,b) and Q(c,d) is :_
[tex]d=\sqrt{(d-b)^2+(c-a)^2}[/tex]
From the graph, the coordinates of ΔCDE are C(-3,1) , D(1,4) and E(3,-2).
Then, length of CD :-
[tex]CD=\sqrt{(4-1)^2+(1-(-3))^2}\\=\sqrt{9+16}=\sqrt{25}=5[/tex]
Length of DE :-
[tex]DE=\sqrt{(-2-4)^2+(3-1)^2}=\sqrt{36+4}\\=\sqrt{40}=5\approx6.3[/tex]
Length of EC :-
[tex]EC=\sqrt{(-3-3)^2+(1-(-2))^2}=\sqrt{(-6)^2+(3)^2}\\=\sqrt{45}=5\approx6.7[/tex]
Now, the perimeter of triangle :_
[tex]CD+DE+EC=5+6.3+6.7=18.0\text{ units}[/tex]
Hence, the perimeter = 18.0 units